Tag Archives: Irrigation

Dry Farming


Fields in the Palouse, Washington State

Dryland farming and dry farming are agricultural techniques for non-irrigated cultivation of crops. Dryland farming is associated with drylands; dry farming is often associated with areas characterized by a cool wet season followed by a warm dry season.

Dry farming is not to be confused with rainfed agriculture. Rainfed agriculture refers to crop production that occurs during a rainy season. Dry farming, on the other hand, refers to crop production during a dry season, utilizing the residual moisture in the soil from the rainy season, usually in a region that receives 20” or more of annual rainfall. Dry farming works to conserve soil moisture during long dry periods primarily through a system of tillage, surface protection, and the use of drought-resistant varieties.

Dryland farming locations

Dryland farming is used in the Great Plains, the Palouse plateau of Eastern Washington, and other arid regions of North America such as in the South-western United States and Mexico (see Agriculture in the Southwestern United States and Agriculture in the prehistoric Southwest), the Middle East and in other grain growing regions such as the steppes of Eurasia and Argentina. Dryland farming was introduced to southern Russia and Ukraine by Slavic Mennonites under the influence of Johann Cornies, making the region the breadbasket of Europe. In Australia, it is widely practiced in all states but the Northern Territory.

Dry farmed crops

Dry farmed crops may include grapes, tomatoes, pumpkins, beans, winter wheat, corn, beans, Sunflowers or even watermelon and other summer crops. These crops grow using the winter water stored in the soil, rather than depending on rainfall during the growing season. Dry farming process

Dry farming depends on making the best use of the “bank” of soil moisture that was created by winter rainfall. Dry farming is not a yield maximization strategy; rather it allows nature to dictate the true sustainability of agricultural production in a region. Dry farming as “a soil tillage technique, is the art of working the soil; starting as early as possible when there is a lot of moisture in the soil, working the ground, creating a sponge-like environment so that the water comes from down below, up into the sponge. You press it down with a roller or some other implement to seal the top…so the water can’t evaporate and escape out.” Some dry farming practices include:

  • Wider than normal spacing, to provide a larger bank of moisture for each plant.
  • Controlled Traffic
  • No-till/zero-till or minimum till
  • Strict weed control, to ensure that weeds do not consume soil moisture needed by the cultivated plants.
  • Cultivation of soil to produce a “dust mulch”, thought to prevent the loss of water through capillary action. This practice is controversial, and is not universally advocated.
  • Selection of crops and cultivars suited for dry farming practices.

While dry farming is not for every grower or every region, it is a promising system of crop management that offers greater crop security in times of uncertain water supply and can offer a higher-quality product.

What Constitute a Vegetable, Herb or Fruit?

Picture 011.jpg

We have all come across these terms. And frankly speaking, they can be confusing. For example, the tomato can sometimes be considered a bit of both fruit and vegetable and some books consider a banana herb and not a fruit. But is there a clear cut definition?

Botanically speaking, anything that bears a seed or is a seed is considered a fruit. There are different kinds of fruit, i.e. nuts are a kind of fruit.  Vegetables are any part of the plant that doesn’t have to do with making new plants. Lettuce is a leaf, carrot is a root, and celery is a stem.  I think I heard a story of how the legal definition of a fruit vs. veggie was established as a way of avoiding taxes or tariffs or something.

Technically, a tomato is a berry.  Just for further enjoyment, an apple is a fluid-filled hypanthium.  🙂 The particular item you are discussing will determine the specific best term to describe it. Generally you can safely call the product of fertilization a “fruit”.  (In the supermarket we routinely call the structure bearing fruits “fruit”). Generally fruits will germinate into plants which will again flower, offering another opportunity for fertilization. (Note that bananas we find in the store bear tiny almost-remnants of seeds which will not germinate…in the wild, banana “fruits” have seeds (fruits, being the products of fertilization) which are much larger which will germinate).  If one discusses a part of a plant which is not the direct product of fertilization or the structure bearing it, then one could safely call the item an herb.  For example, basil leaves are vegetative structures not specifically the result of fertilization and are most easily described as herbs. We do not have an adequate definition for ‘vegetable’, but our feeling for its routine meaning is any part of a plant consumed whether a stem (celery), a leaf (lettuce), a root or tuber (radish, or potato, respectively), and in some cases the fruit of fertilization or structures bearing them (cucumbers, yes-tomatoes).  Added to this are items such as mushrooms (basidiocarps of fungi) and you get the idea….the term vegetable has come to mean almost anything which is not animal or mineral which we find in the ‘produce’ section of the supermarket.  Thus, the term vegetable has somewhat lost a botanical usefulness in that there are more specific terms to use depending on the particular structure being discussed. Note that there are specific botanical definitions for berries which can be found in any good plant classification text; you can see this is essential, for example, in distinguishing between raspberries, blueberries, and tomatoes (also berries). We hope this shed some light on the challenge of plant classification and gives some insight as to why scientific names were established to pin down a particular organism to prevent confusion with many common names or possibly similar terms for different organisms.

Follow us also on Facebook



Mulch is a protective covering, usually of organic matter such as leaves, straw, or peat, placed around plants to prevent the evaporation of moisture, and the growth of weeds. The word mulch has probably been derived from the German word “molsch” meaning soft to decay, which apparently referred to the gardener’s use of straw and leaves as a spread over the ground as mulch.
Mulching (1) reduces the deterioration of soil by way of preventing the runoff and Soil loss, (2) minimizes the weed infestation and (3) checks the water evaporation. Thus, it facilitates for more retention of soil moisture and (4) helps in control of temperature fluctuations, (5) improves physical, chemical and biological properties of soil, as it adds (6) nutrients to the soil and ultimately (7) enhances the growth and yield of crops. Further, reported that mulching (8) boosts the yield by 50–60% over no mulching under rain-fed situations.

Advancement in plastic chemistry has resulted in development of films with optical properties that are ideal for a specific crop in a given location. Horticulturists need to understand the optimum above and below ground environment of a particular crop before the use of plastic mulch. These are two types.
Photo-degradable plastic mulch: This type of plastic mulch film gets destroyed by sun light in a shorter period.
Bio-degradable plastic mulch: This type of plastic mulch film is easily degraded in the soil over a period of time.

Soil environment can be managed precisely by a proper selection of plastic mulch composition, colour and thickness. Films are available in variety of colours including black, transparent, white, silver, blue red, etc. But the selection of the colour of plastic mulch film depends on specific targets. Generally, the following types of plastic mulch films are used in horticultural crops.
1. Black plastic film: It helps in conserving moisture, controlling weed and reducing outgoing radiation.
2. Reflective silver film: It generally maintains the root-zone temperature cooler.
3. Transparent film: It increases the soil temperature and preferably used for solarisation.
Apart from the above classification there is another way of classifying Methods in mulching:
1. Surface mulching: Mulches are spread on surface to reduce evaporation and increase soil moisture.
2. Vertical mulching: It involves opening of trenches of 30 cm depth and 15 cm width across the slope at vertical interval of 30 cm.
3. Polythene mulching: Sheets of plastic are spread on the soil surface between the crop rows or around tree trunks.
4. Pebble mulching: Soil is covered with pebbles to prevent transfer of heat from atmosphere.
5. Dust mulching: Interculture operation that creates dust to break continuous capillaries, and deep and wide cracks thus reducing evaporation from the exposed soil areas.
6. Live vegetative barriers on contour key lines not only serve as effective mulch when cut and spread on ground surface, but also supply nitrogen to the extent of 25 to 30 kg per ha, besides improving soil moisture status.

Water is essential for growth and development. It is also a major cost in agricultural systems. The success of many agricultural forms relies on conservative and efficient use of water. Moisture retention is undoubtedly the most common reason for which mulch is applied to soil.
Ingman claimed that the use of things made with plastic or plastic components have become a routine part of our daily lives. In a similar way, over the past 50 years world agricultural systems have rapidly adopted the use of many types of plastic products to grow the food we eat because of the productive advantages they afford. Plastic use in agriculture (plasticulture) continues to increase every year in the ever-diminishing supply of petroleum. There is a common lack of awareness
regarding what plastic mulch is, and also a lack of applied research of its use in agricultural communities. However, the use of plastic mulch may actually be one of the most significant water conservation practices in modern agriculture: quite possibly surpassing the water savings of drip irrigation. Even though most of the world’s use of freshwater is spent for irrigation purposes, little research explores how plastic mulch use as a water conservation practice may influence the current and future status of water resources. He used a multidisciplinary approach to understand why Chinese farmers on the margins of the Gobi desert continue to use plastic mulch, and in particular, how its use may relate to water conservation. Next, the study asks to what extent the plasticization of agriculture may influence the income and standard of living for agricultural communities. He was able to prove the role of plastic mulch in conserving soil moisture.
Mulch is used to protect the soil from direct exposure to the sun, which would evaporate moisture from the soil surface and cause drying of the soil profile. The protective interface established by the mulch stops raindrop splash by absorbing the
impact energy of the rain, hence reducing soil surface crust formation. The mulch permits soil surface to prevent runoff allowing a longer infiltration time. These features result in improved water infiltration rates and higher soil moisture. An auxiliary benefit of mulch reducing soil splash is the decreased need for additional
cleaning prior to processing of the herb foliage. Organic and inorganic mulches have shown to improve the soil moisture retention. This increased water holding ability enables plants to survive during dry periods. The use of plastic mulch can be improved if under-mulch irrigation is used in combination with soil moisture monitoring.
The influence of rainfall events is not as great when plastic mulch is used, necessitating active irrigation management. Under mulch, irrigation of vegetable crops has been shown to improve crop yields more than overhead irrigation systems.
Mulch enables the soil moisture levels to maintain for longer periods. In some cases while providing improved moisture conditions within the soil, the mulch changes microclimate so that it uses more water, thus negating the initial benefits. Plastic mulch conserved 47.08% of water and increased yield by 47.67% in tomato
when compared to nonmulched control. Plastic mulching resulted in 33 to 52% more efficient use of irrigation water in bell pepper compared to bare soil.
The conservation of soil moisture through mulching is one of the important best management practices (BMP). The microclimatic conditions are favourably affected by optimum degree of soil moisture. When soil surface is covered with mulch helps
to prevent weed growth, reduce evaporation and increase infiltration of rainwater during growing season.
Different mulching materials helped bell pepper (C. annuum cv. California Wonder) to perform better at water deficits from 25–75% and plastic mulch had highest water use efficiency. Treatment receiving mulch recorded significantly higher net

Source: Best Management Practices for Drip Irrigated Crops
Like us on Facebook