Tag Archives: Agricultural research

The Role of Research and Development in Agriculture

crop-trials

Crop Trials Being Carried Out

WHAT IS RESEARCH?

Research can be understood to be a series of Tests, Trials or Experiments. In other words to conduct research implies to inquire systematically about a given situation.

Research is important in the development of technology and implementation of new ideas. Most firms, universities and corporations have Research and Development Departments that steer companies into the future and remain competitive.

In agriculture, research is thought of mainly as trials and these are mainly conducted in the field.

Research can further be broken down into Research Programme and Research Project.  Programme involves many different kinds of research, while a project looks at one specific area.

Research can be categorised into 4 categories:

  • Exploratory – aimed at discovery of new ideas, techniques and machines.
  • Confirmatory – aimed at verifying some past findings based on the protocol that was used in the earlier research.
  • Diagnostic – aimed at identifying the cause of a given problem/or providing solutions.
  • Adaptive/modification – research aimed at changing or modifying the technology to suit a given environment or situation.

THE ROLE OF AGRICULTURAL RESEARCH

Existing technology and knowledge will not permit the necessary expansions in food production to meet needs. Low-income developing countries such as Zambia are grossly underinvesting in agricultural research compared with industrialized countries such as the USA, even though agriculture accounts for a much larger share of their employment and incomes. Their public sector expenditures on agricultural research are typically less than 0.5 percent of agricultural gross domestic product, compared with about two percent in higher-income developing countries and two percent to five percent in industrialized countries.

Investment in agricultural research must be accelerated if developing countries are to assure future food security for their citizens at reasonable prices and without irreversible degradation of the natural resource base. Accelerated investment in agricultural research is particularly important and urgent for low-income developing countries, partly because these countries will not achieve reasonable economic growth, poverty alleviation, and improvements in food security without productivity increases in agriculture, and partly because so little research is currently undertaken in these countries. The negative correlation between investment in agricultural research and a country’s income level is very strong. Poor countries, which depend the most on productivity increases in agriculture, grossly underinvest in agricultural research.

Agricultural research has successfully developed yield-enhancing technology for the majority of crops grown in temperate zones and for several crops grown in the tropics. The dramatic impact of agricultural research and modern technology on wheat and rice yields in Asia and Latin America since the mid-1960s is well known. Less dramatic but significant yield gains have been obtained from research and technological change in other crops, particularly maize.

Large yield gains currently being obtained in many crops at the experimental level offer great promise for future yield and production increases at the farm level. In addition to raising yield levels, research resulting in tolerance or resistance to adverse production factors such as pests and drought, leading to biological and integrated pest control, and to develop improved varieties and hybrids for agroecological zones with less than optimal production conditions reduces risks and uncertainty and enhances sustainability in production through better management of natural resources and reduced environmental risks.

Accelerated agricultural research aimed at more-favoured areas will reduce pressures on fragile lands in less-favoured areas. Future research for the former must pay much more attention to sustainability than in the past to avoid a continuation of extensive waterlogging, salination, and other forms of land degradation. But, a continuation of past low-priority on less-favoured agroecological zones is inappropriate and insufficient to achieve the goals of poverty alleviation, improved food security, and appropriate management of natural resources. More research resources must be dedicated to less-favoured areas, those with agricultural potential, fragile lands, poor rainfall, and high risks of environmental degradation. A large share of the poor and food insecure reside in these agroecological zones.

The low priority given to research to develop appropriate technology for less favoured agroecological zones in the past is a major reason for the current rapid degradation of natural resources and high levels of population growth, poverty, and food insecurity. Much more research must be directed at developing appropriate technology for these areas. Out migration is not a feasible solution for these areas in the foreseeable future simply because of the large numbers of poor people who reside there and the lack of alternative opportunities elsewhere. Strengthening agriculture and related non-agricultural rural enterprises is urgent and must receive high priority.

Following on the tremendous successes popularly referred to as the Green

Revolution, the international agricultural research centres have recognized the importance and urgency of research to assure sustainability in agricultural intensification through appropriate management of natural resources. Thus management of natural resources and conservation and enhancement of germplasm are given high priority in current and future research by the centres.

Declining investment in agricultural research for developing countries since the mid-1980s by both developing-country governments and international foreign assistance agencies is inappropriate and must be reversed. While privatization of agricultural research should be encouraged, much of the agricultural research needed to achieve food security, reduce poverty, and avoid environmental degradation in developing countries is of a public goods nature and will not be undertaken by the private sector. Fortunately, while private rates of return may be insufficient to justify private-sector investment, expected high social rates of returns justify public investment. The major share of such investment should occur in the developing countries’ own research institutions; there is an urgent need to strengthen these institutions to expand research and increase the probability of high payoffs.

Research institutions in the industrialized nations have played an extremely important role by undertaking basic research required to support strategic, adaptive, and applied research by the international centres and developing countries’ own research institutions and by providing training for developing-country researchers. Collaboration among developed country research institutions and developing countries’ own research institutions is widespread, but further strengthening is required to make full use of the comparative advantages of each of the two groups for the ultimate benefit of the poor in developing countries.

All appropriate aspects of science, including molecular biology-based research, must be mobilized to solve poor people’s problems. Almost all of the investment made in genetic engineering and biotechnology for agriculture during the last 10 to 15 years has been focused on solving problems in temperate-zone agriculture such as herbicide resistance in cotton, longer shelf life for perishable products such as tomatoes, and a variety of other problems of importance in the industrialized nations. If we are serious about helping poor people, particularly poor women, and if we are serious about assuring sustainability in the use of natural resources, we must use all appropriate tools at our disposal to achieve these goals, including modern science. For example, modern science may help eliminate losses resulting from drought among small scale farmers. Drought-tolerant varieties of maize that poor farmers can grow could potentially be developed, along with crop varieties with tolerance or resistance to other adverse conditions, including certain insects and pests.

While some argue that it is too risky to use genetic engineering to solve poor people’s problems because we may be unaware of future side effects, we believe that it is unethical to withhold solutions to problems that cause thousands of children to die from hunger and malnutrition. Clearly, we must seek acceptable levels of biosafety before releasing products from modern science, but it is critical that the risks associated with the solutions be weighed against the ethics of not making every effort to solve food and nutrition problems.

Effective partnerships between developing-country research systems, international research institutions, and private and public sector research institutions in industrialized countries should be forged to bring biotechnology to bear on the agricultural problems of developing countries. Incentives should be provided to the private sector to undertake biotechnology research focused on the problems of developing-country farmers. Failure to expand agricultural research significantly in and for developing countries will make food security, poverty, and environmental goals elusive. Lack of foresight today will carry a very high cost for the future. As usual, the weak and powerless will carry the major burden, but just as we must all share the blame for inaction or inappropriate action so will we all suffer the consequences.

Like our Facebook Page